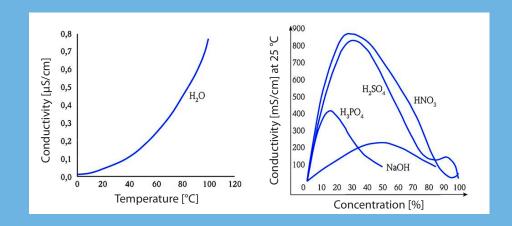
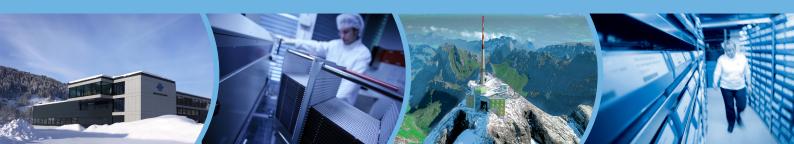
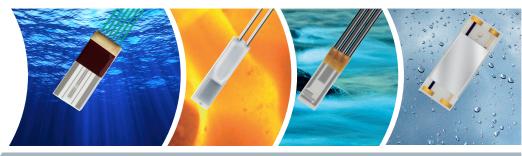


CONDUCTIVITY SENSORS

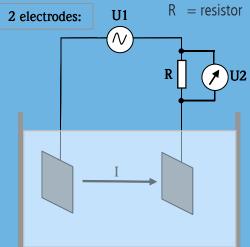

CONDUCTIVITY SENSORS


Despite its simplicity, the measurement of electrical conductivity in liquid substances is a very powerful analytical and diagnostic tool in a variety of applications. The modern, thin-film conductivity sensor element is a viable alternative to the classical, bulky conductivity sensors of the past.


THEORETICAL BACKGROUND

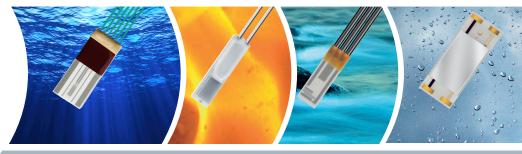
An electrolyte is a liquid containing ions. Under a voltage, ions act as charge carriers and a current flows. Therefore, quality of the liquid can be assessed by determining the conductivity. The conductivity of the liquid depends on two temperature-dependent parameters: ion concentration and their mobility. For improved accuracy a temperature sensor is placed directly at the point of measurement.

SELECTED CONDUCTIVITY OF ELECTROLYTES


Electrolyte	Electrical c μS/cm	onductivity S/m
Ultra pure water	0.05-0.1	5-10*10 ⁻⁶
Tap water	300-800	0.03-0.08
NaCl (0.2 g/l)	4'000	0.4
NaCl (2 g/l)	38′600	3.86
Seawater	~ 56'000	~ 5.6
Bulk silver (for comparison)	62.5*10 ⁶	6′250

THE MEASUREMENT PRINCIPLES Conductivity (using electrodes)

U1 = input signal (AC)U2 = output signal (AC)


= current flow

AC excitation is recommended to reduce degradation of the electrode and electrolyte

CONDUCTIVITY AND CELL CONSTANT

The conductivity value, as a result of the measurement, depends additionally on the cell geometry. The influence of the cell geometry can be eliminated by introducing the so-called cell constant. Using the following formula, the electrical conductivity, κ , can be obtained at a specific temperature:

$$\kappa = \frac{k * I}{U}$$

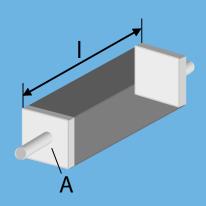
k = cell constant

U = measurement voltage

I = current flow

 κ = electrical conductivity

The exact value of the cell constant can be obtained as a result of calibration measurements in standard solutions. To avoid additional measurement errors, it is important to use a solution with electrical conductivity values close to the values of the intended application solution.


Conducitivity

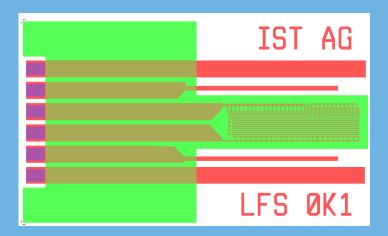
$$R = \frac{1}{\kappa * A}$$

$$\Rightarrow \kappa = \frac{1}{R * A}$$

 κ = electrical conductivity

I = length A = area

Cell constant is influenced by


- Boundary effects
- Planar geometry of chip layout

BASIC LAYOUT: 4 ELECTRODES LINEAR

Key parameters for customer specific designs

- Measurement liquid characteristics (stability of platinum electrodes)
 - Customer testing mostly required
 - Samples can be provided
- Measurement range (cell constant)
 - Can be adjusted by the geometry of the electrodes
- Read-out
 - Recommendation: AC 300 3000 Hz, 1.6 V_{pp} or less
- Assembly method
 - Encapsulated wires and fixation
- Customer expectations
 - Only chip
 - Assembly
 - Electrical read-out (under development)

CONTACT

IST AG Stegrütistrasse 14 9642 Ebnat-Kappel Switzerland

Phone +41 (0)71 992 01 00 Fax +41 (0)71 992 01 99 Email info@ist-ag.com URL www.ist-ag.com

BC E1.2

